What is This / FAQ

FAQ

ons het 'n paar algemene probleme opgesom

produksie

  • Q.

    Maak jy pasgemaakte produkte?

    A.

    Ja. Ons bied kliënte OEM / ODM oplossings. Die OEM minimum bestelhoeveelheid is 10,000 stukke.

  • Q.

    Hoe verpak jy die produkte?

    A.

    Ons verpak volgens die Verenigde Nasies se regulasies, en ons kan ook spesiale verpakking verskaf volgens klantvereistes.

  • Q.

    Watter soort sertifikaat het u?

    A.

    Ons het ISO9001, CB, CE, UL, BIS, UN38.3, KC, PSE.

  • Q.

    Verskaf u gratis monsters?

    A.

    Ons verskaf batterye met 'n krag van hoogstens 10WH as gratis monsters.

  • Q.

    Wat is u produksievermoë?

    A.

    120,000-150,000 stukke per dag, elke produk het 'n ander produksiekapasiteit, u kan gedetailleerde inligting volgens e-pos bespreek.

  • Q.

    Hoe lank neem dit om te produseer?

    A.

    Ongeveer 35 dae. Die spesifieke tyd kan per e-pos gekoördineer word.

  • Q.

    Hoe lank is u monsterproduksietyd?

    A.

    Twee weke (14 dae).

ander

  • Q.

    Wat is die betalingsvoorwaardes?

    A.

    Ons aanvaar gewoonlik 30% vooruitbetaling as 'n deposito en 70% voor aflewering as die finale betaling. Ander metodes kan onderhandel word.

  • Q.

    Wat is die afleweringsvoorwaardes?

    A.

    Ons verskaf: FOB en CIF.

  • Q.

    Wat is die betaalmetode?

    A.

    Ons aanvaar betaling via TT.

  • Q.

    In watter markte het jy verkoop?

    A.

    Ons het goedere na Noord-Europa, Wes-Europa, Noord-Amerika, Midde-Ooste, Asië, Afrika en ander plekke vervoer.

Tegnologie

  • Q.

    Wat is 'n battery?

    A.

    Batteries are a kind of energy conversion and storage devices that convert chemical or physical energy into electrical energy through reactions. According to the different energy conversion of the battery, the battery can be divided into a chemical battery and a biological battery. A chemical battery or chemical power source is a device that converts chemical energy into electrical energy. It comprises two electrochemically active electrodes with different components, respectively, composed of positive and negative electrodes. A chemical substance that can provide media conduction is used as an electrolyte. When connected to an external carrier, it delivers electrical energy by converting its internal chemical energy. A physical battery is a device that converts physical energy into electrical energy.

  • Q.

    Wat is die verskille tussen primêre batterye en sekondêre batterye?

    A.

    Die belangrikste verskil is dat die aktiewe materiaal anders is. Die aktiewe materiaal van die sekondêre battery is omkeerbaar, terwyl die aktiewe materiaal van die primêre battery nie is nie. Die selfontlading van die primêre battery is baie kleiner as dié van die sekondêre battery. Tog is die interne weerstand baie groter as dié van die sekondêre battery, so die laaikapasiteit is laer. Daarbenewens is die massa-spesifieke kapasiteit en volume-spesifieke kapasiteit van die primêre battery meer betekenisvol as dié van beskikbare herlaaibare batterye.

  • Q.

    Wat is die elektrochemiese beginsel van Ni-MH-batterye?

    A.

    Ni-MH batteries use Ni oxide as the positive electrode, hydrogen storage metal as the negative electrode, and lye (mainly KOH) as the electrolyte. When the nickel-hydrogen battery is charged: Positive electrode reaction: Ni(OH)2 + OH- → NiOOH + H2O–e- Adverse electrode reaction: M+H2O +e-→ MH+ OH- When the Ni-MH battery is discharged: Positive electrode reaction: NiOOH + H2O + e- → Ni(OH)2 + OH- Negative electrode reaction: MH+ OH- →M+H2O +e-

  • Q.

    Wat is die elektrochemiese beginsel van litium-ioonbatterye?

    A.

    The main component of the positive electrode of the lithium-ion battery is LiCoO2, and the negative electrode is mainly C. When charging, Positive electrode reaction: LiCoO2 → Li1-xCoO2 + xLi+ + xe- Negative reaction: C + xLi+ + xe- → CLix Total battery reaction: LiCoO2 + C → Li1-xCoO2 + CLix The reverse reaction of the above reaction occurs during discharge.

  • Q.

    Wat is die algemeen gebruikte standaarde vir batterye?

    A.

    Commonly used IEC standards for batteries: The standard for nickel-metal hydride batteries is IEC61951-2: 2003; the lithium-ion battery industry generally follows UL or national standards. Commonly used national standards for batteries: The standards for nickel-metal hydride batteries are GB/T15100_1994, GB/T18288_2000; the standards for lithium batteries are GB/T10077_1998, YD/T998_1999, and GB/T18287_2000. In addition, the commonly used standards for batteries also include the Japanese Industrial Standard JIS C on batteries. IEC, the International Electrical Commission (International Electrical Commission), is a worldwide standardization organization composed of electrical committees of various countries. Its purpose is to promote the standardization of the world's electrical and electronic fields. IEC standards are standards formulated by the International Electrotechnical Commission.

  • Q.

    Wat is die hoofstruktuur van die Ni-MH-battery?

    A.

    Die hoofkomponente van nikkel-metaalhidriedbatterye is positiewe elektrodeplaat (nikkeloksied), negatiewe elektrodeplaat (waterstofopbergingslegering), elektroliet (hoofsaaklik KOH), diafragmapapier, seëlring, positiewe elektrodedop, batterykas, ens.

  • Q.

    Wat is die belangrikste strukturele komponente van litiumioonbatterye?

    A.

    Die hoofkomponente van litium-ioonbatterye is boonste en onderste batterydeksels, positiewe elektrodeplaat (aktiewe materiaal is litiumkobaltoksied), skeiding ('n spesiale saamgestelde membraan), 'n negatiewe elektrode (aktiewe materiaal is koolstof), organiese elektroliet, batterykas (verdeel in twee soorte staaldop en aluminiumdop) ensovoorts.

  • Q.

    Wat is die interne weerstand van die battery?

    A.

    Dit verwys na die weerstand wat ervaar word deur die stroom wat deur die battery vloei wanneer die battery werk. Dit is saamgestel uit ohmiese interne weerstand en polarisasie interne weerstand. Die aansienlike interne weerstand van die battery sal die battery-ontladingswerkspanning verminder en die ontladingstyd verkort. Die interne weerstand word hoofsaaklik beïnvloed deur die batterymateriaal, vervaardigingsproses, batterystruktuur en ander faktore. Dit is 'n belangrike parameter om batteryprestasie te meet. Let wel: Oor die algemeen is die interne weerstand in die gelaaide toestand die standaard. Om die battery se interne weerstand te bereken, moet dit 'n spesiale interne weerstandsmeter gebruik in plaas van 'n multimeter in die ohm-reeks.

  • Q.

    Wat is die nominale spanning?

    A.

    Die nominale spanning van die battery verwys na die spanning wat tydens gereelde werking vertoon word. Die nominale spanning van die sekondêre nikkel-kadmium nikkel-waterstof battery is 1.2V; die nominale spanning van die sekondêre litiumbattery is 3.6V.

  • Q.

    Wat is oopbaanspanning?

    A.

    Oopbaanspanning verwys na die potensiaalverskil tussen die positiewe en negatiewe elektrodes van die battery wanneer die battery nie werk nie, dit wil sê wanneer daar geen stroom deur die stroombaan vloei nie. Werkspanning, ook bekend as terminale spanning, verwys na die potensiaalverskil tussen die positiewe en negatiewe pole van die battery wanneer die battery werk, dit wil sê wanneer daar oorstroom in die stroombaan is.

  • Q.

    Wat is die kapasiteit van die battery?

    A.

    Die kapasiteit van die battery word verdeel in die gegradeerde krag en die werklike vermoë. Die battery se gegradeerde kapasiteit verwys na die bepaling of waarborge dat die battery die minimum hoeveelheid elektrisiteit onder sekere ontladingstoestande tydens die ontwerp en vervaardiging van die storm moet ontlaai. Die IEC-standaard bepaal dat nikkel-kadmium- en nikkel-metaalhidriedbatterye vir 0.1 uur by 16C gelaai word en teen 0.2C tot 1.0V by 'n temperatuur van 20°C±5°C ontlaai word. Die battery se gegradeerde kapasiteit word uitgedruk as C5. Litium-ioonbatterye word bepaal om vir 3 uur onder gemiddelde temperatuur te laai, konstante stroom (1C)-konstante spanning (4.2V) beheer veeleisende toestande, en dan teen 0.2C tot 2.75V te ontlaai wanneer die ontlaaide elektrisiteit gegradeerde kapasiteit is. Die battery se werklike kapasiteit verwys na die werklike krag wat deur die storm vrygestel word onder sekere ontladingstoestande, wat hoofsaaklik deur die ontladingstempo en temperatuur beïnvloed word (so streng gesproke moet die batterykapasiteit die laai- en ontladingstoestande spesifiseer). Die eenheid van batterykapasiteit is Ah, mAh (1Ah=1000mAh).

  • Q.

    Wat is die oorblywende ontladingskapasiteit van die battery?

    A.

    Wanneer die herlaaibare battery met 'n groot stroom (soos 1C of hoër) ontlaai word, as gevolg van die "bottelnekkeffek" wat in die interne diffusietempo van die stroomoorstroom bestaan, het die battery die terminale spanning bereik wanneer die kapasiteit nie ten volle ontlaai is nie , en gebruik dan 'n klein stroom soos 0.2C kan voortgaan om te verwyder, totdat 1.0V/stuk (nikkel-kadmium en nikkel-waterstofbattery) en 3.0V/stuk (litiumbattery), die vrygestelde kapasiteit word residuele kapasiteit genoem.

  • Q.

    Wat is 'n ontladingsplatform?

    A.

    Die ontladingsplatform van Ni-MH herlaaibare batterye verwys gewoonlik na die spanningsreeks waarin die battery se werkspanning relatief stabiel is wanneer dit onder 'n spesifieke ontladingstelsel ontlaai word. Die waarde daarvan hou verband met die ontladingsstroom. Hoe groter die stroom, hoe laer die gewig. Die ontladingsplatform van litium-ioonbatterye is gewoonlik om op te hou laai wanneer die spanning 4.2V is, en die huidige is minder as 0.01C by 'n konstante spanning, laat dit dan vir 10 minute, en ontlaai tot 3.6V teen enige ontladingstempo huidige. Dit is 'n noodsaaklike standaard om die kwaliteit van batterye te meet.

  • Q.

    Wat is die merkmetode vir herlaaibare batterye gespesifiseer deur IEC?

    A.

    Volgens die IEC-standaard bestaan ​​die merk van Ni-MH-battery uit 5 dele. 01) Battery type: HF and HR indicate nickel-metal hydride batteries 02) Battery size information: including the diameter and height of the round battery, the height, width, and thickness of the square battery, and the values ​​are separated by a slash, unit: mm 03) Discharge characteristic symbol: L means that the suitable discharge current rate is within 0.5C M indicates that the suitable discharge current rate is within 0.5-3.5C H indicates that the suitable discharge current rate is within 3.5-7.0C X indicates that the battery can work at a high rate discharge current of 7C-15C. 04) High-temperature battery symbol: represented by T 05) Battery connection piece: CF represents no connection piece, HH represents the connection piece for battery pull-type series connection, and HB represents the connection piece for side-by-side series connection of battery belts. Byvoorbeeld, HF18/07/49 verteenwoordig 'n vierkantige nikkel-metaalhidriedbattery met 'n breedte van 18mm, 7mm en 'n hoogte van 49mm. KRMT33/62HH verteenwoordig nikkel-kadmium battery; die ontladingstempo is tussen 0.5C-3.5, hoë-temperatuur reeks enkelbattery (sonder koppelstuk), deursnee 33mm, hoogte 62mm. According to the IEC61960 standard, the identification of the secondary lithium battery is as follows: 01) The battery logo composition: 3 letters, followed by five numbers (cylindrical) or 6 (square) numbers. 02) Die eerste letter: dui die skadelike elektrodemateriaal van die battery aan. I—verteenwoordig litium-ioon met ingeboude battery; L—verteenwoordig litiummetaalelektrode of litiumlegeringselektrode. 03) Die tweede letter: dui die katodemateriaal van die battery aan. C—kobalt-gebaseerde elektrode; N—nikkel-gebaseerde elektrode; M—mangaan-gebaseerde elektrode; V—vanadium-gebaseerde elektrode. 04) Die derde letter: dui die vorm van die battery aan. R- verteenwoordig silindriese battery; L-verteenwoordig vierkantige battery. 05) Getalle: Silindriese battery: 5 getalle dui onderskeidelik die deursnee en hoogte van die storm aan. Die eenheid van deursnee is 'n millimeter, en die grootte is 'n tiende van 'n millimeter. Wanneer enige deursnee of hoogte groter as of gelyk aan 100 mm is, moet dit 'n diagonale lyn tussen die twee groottes byvoeg. Vierkantige battery: 6 syfers dui die dikte, breedte en hoogte van die storm in millimeter aan. Wanneer enige van die drie afmetings groter as of gelyk aan 100 mm is, moet dit 'n skuinsstreep tussen die afmetings byvoeg; as enige van die drie afmetings minder as 1 mm is, word die letter "t" voor hierdie afmeting bygevoeg, en die eenheid van hierdie afmeting is een-tiende van 'n millimeter. Byvoorbeeld, ICR18650 verteenwoordig 'n silindriese sekondêre litium-ioon battery; die katodemateriaal is kobalt, sy deursnee is ongeveer 18 mm, en sy hoogte is ongeveer 65 mm. ICR20/1050. ICP083448 verteenwoordig 'n vierkantige sekondêre litiumioonbattery; die katodemateriaal is kobalt, sy dikte is ongeveer 8 mm, die breedte is ongeveer 34 mm, en die hoogte is ongeveer 48 mm. ICP08/34/150 verteenwoordig 'n vierkantige sekondêre litiumioonbattery; die katodemateriaal is kobalt, sy dikte is ongeveer 8 mm, die breedte is ongeveer 34 mm, en die hoogte is ongeveer 150 mm.

  • Q.

    Wat is die verpakkingsmateriaal van die battery?

    A.

    01) Non-dry meson (paper) such as fiber paper, double-sided tape 02) PVC film, trademark tube 03) Connecting sheet: stainless steel sheet, pure nickel sheet, nickel-plated steel sheet 04) Lead-out piece: stainless steel piece (easy to solder) Pure nickel sheet (spot-welded firmly) 05) Plugs 06) Protection components such as temperature control switches, overcurrent protectors, current limiting resistors 07) Carton, paper box 08) Plastic shell

  • Q.

    Wat is die doel van batteryverpakking, samestelling en ontwerp?

    A.

    01) Beautiful, brand 02) The battery voltage is limited. To obtain a higher voltage, it must connect multiple batteries in series. 03) Protect the battery, prevent short circuits, and prolong battery life 04) Size limitation 05) Easy to transport 06) Design of special functions, such as waterproof, unique appearance design, etc.

  • Q.

    Wat is die hoofaspekte van die werkverrigting van die sekondêre battery in die algemeen?

    A.

    Dit sluit hoofsaaklik spanning, interne weerstand, kapasiteit, energiedigtheid, interne druk, selfontladingstempo, sikluslewe, seëlwerkverrigting, veiligheidsprestasie, bergingsprestasie, voorkoms, ens. in. Daar is ook oorlading, oorontlading en korrosieweerstand.

  • Q.

    Wat is die betroubaarheidstoetsitems van die battery?

    A.

    01) Cycle life 02) Different rate discharge characteristics 03) Discharge characteristics at different temperatures 04) Charging characteristics 05) Self-discharge characteristics 06) Storage characteristics 07) Over-discharge characteristics 08) Internal resistance characteristics at different temperatures 09) Temperature cycle test 10) Drop test 11) Vibration test 12) Capacity test 13) Internal resistance test 14) GMS test 15) High and low-temperature impact test 16) Mechanical shock test 17) High temperature and high humidity test

  • Q.

    Wat is die batteryveiligheidstoetsitems?

    A.

    01) Short circuit test 02) Overcharge and over-discharge test 03) Withstand voltage test 04) Impact test 05) Vibration test 06) Heating test 07) Fire test 09) Variable temperature cycle test 10) Trickle charge test 11) Free drop test 12) low air pressure test 13) Forced discharge test 15) Electric heating plate test 17) Thermal shock test 19) Acupuncture test 20) Squeeze test 21) Heavy object impact test

  • Q.

    Wat is die standaard laaimetodes?

    A.

    Charging method of Ni-MH battery: 01) Constant current charging: the charging current is a specific value in the whole charging process; this method is the most common; 02) Constant voltage charging: During the charging process, both ends of the charging power supply maintain a constant value, and the current in the circuit gradually decreases as the battery voltage increases; 03) Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero. Lithium battery charging method: Constant current and constant voltage charging: The battery is first charged with constant current (CC). When the battery voltage rises to a specific value, the voltage remains unchanged (CV), and the wind in the circuit drops to a small amount, eventually tending to zero.

  • Q.

    Wat is die standaard laai en ontlading van Ni-MH batterye?

    A.

    Die IEC internasionale standaard bepaal dat die standaard laai en ontlaai van nikkel-metaalhidried batterye is: ontlaai eers die battery teen 0.2C tot 1.0V/stuk, laai dan by 0.1C vir 16 uur, laat dit vir 1 uur, en sit dit by 0.2C tot 1.0V/stuk, dit is om die batterystandaard te laai en te ontlaai.

  • Q.

    Wat is polslaai? Wat is die impak op batterywerkverrigting?

    A.

    Polslaai gebruik gewoonlik laai en ontlaai, stel vir 5 sekondes en laat dan vir 1 sekonde. Dit sal die meeste van die suurstof wat tydens die laaiproses gegenereer word, verminder tot elektroliete onder die ontladingspuls. Dit beperk nie net die hoeveelheid interne elektrolietverdamping nie, maar daardie ou batterye wat sterk gepolariseer is sal geleidelik herstel of die oorspronklike kapasiteit nader na 5-10 keer van laai en ontlaai met hierdie laaimetode.

  • Q.

    Wat is druppellading?

    A.

    Druppellaai word gebruik om op te maak vir die kapasiteitsverlies wat veroorsaak word deur die battery se selfontlading nadat dit ten volle gelaai is. Oor die algemeen word polsstroomlading gebruik om bogenoemde doel te bereik.

  • Q.

    Wat is laaidoeltreffendheid?

    A.

    Laaidoeltreffendheid verwys na 'n maatstaf van die mate waarin die elektriese energie wat deur die battery tydens die laaiproses verbruik word, omgeskakel word na die chemiese energie wat die battery kan stoor. Dit word hoofsaaklik deur die batterytegnologie en die werksomgewingstemperatuur van die storm beïnvloed—oor die algemeen, hoe hoër die omgewingstemperatuur, hoe laer is die laaidoeltreffendheid.

  • Q.

    Wat is afvoerdoeltreffendheid?

    A.

    Ontladingsdoeltreffendheid verwys na die werklike krag wat na die terminaalspanning ontslaan word onder sekere ontladingstoestande tot die gegradeerde kapasiteit. Dit word hoofsaaklik beïnvloed deur die ontladingstempo, omgewingstemperatuur, interne weerstand en ander faktore. Oor die algemeen, hoe hoër die ontladingstempo, hoe hoër is die ontladingstempo. Hoe laer die afvoerdoeltreffendheid. Hoe laer die temperatuur, hoe laer is die afvoerdoeltreffendheid.

  • Q.

    Wat is die uitsetkrag van die battery?

    A.

    The output power of a battery refers to the ability to output energy per unit time. It is calculated based on the discharge current I and the discharge voltage, P=U*I, the unit is watts. The lower the internal resistance of the battery, the higher the output power. The internal resistance of the battery should be less than the internal resistance of the electrical appliance. Otherwise, the battery itself consumes more power than the electrical appliance, which is uneconomical and may damage the battery.

  • Q.

    Wat is die selfontlading van die sekondêre battery? Wat is die selfontladingstempo van verskillende tipes batterye?

    A.

    Self-discharge is also called charge retention capability, which refers to the retention capability of the battery's stored power under certain environmental conditions in an open circuit state. Generally speaking, self-discharge is mainly affected by manufacturing processes, materials, and storage conditions. Self-discharge is one of the main parameters to measure battery performance. Generally speaking, the lower the storage temperature of the battery, the lower the self-discharge rate, but it should also note that the temperature is too low or too high, which may damage the battery and become unusable. After the battery is fully charged and left open for some time, a certain degree of self-discharge is average. The IEC standard stipulates that after fully charged, Ni-MH batteries should be left open for 28 days at a temperature of 20℃±5℃ and humidity of (65±20)%, and the 0.2C discharge capacity will reach 60% of the initial total.

  • Q.

    Wat is 'n 24-uur selfontladingstoets?

    A.

    The self-discharge test of lithium battery is: Generally, 24-hour self-discharge is used to test its charge retention capacity quickly. The battery is discharged at 0.2C to 3.0V, constant current. Constant voltage is charged to 4.2V, cut-off current: 10mA, after 15 minutes of storage, discharge at 1C to 3.0 V test its discharge capacity C1, then set the battery with constant current and constant voltage 1C to 4.2V, cut-off current: 10mA, and measure 1C capacity C2 after being left for 24 hours. C2/C1*100% should be more significant than 99%.

  • Q.

    Wat is die verskil tussen die interne weerstand van die gelaaide toestand en die interne weerstand van die ontlaaide toestand?

    A.

    The internal resistance in the charged state refers to the internal resistance when the battery is 100% fully charged; the internal resistance in the discharged state refers to the internal resistance after the battery is fully discharged. Generally speaking, the internal resistance in the discharged state is not stable and is too large. The internal resistance in the charged state is more minor, and the resistance value is relatively stable. During the battery's use, only the charged state's internal resistance is of practical significance. In the later period of the battery's help, due to the exhaustion of the electrolyte and the reduction of the activity of internal chemical substances, the battery's internal resistance will increase to varying degrees.

  • Q.

    Wat is statiese weerstand? Wat is dinamiese weerstand?

    A.

    Die statiese interne weerstand is die battery se interne weerstand tydens ontlaai, en die dinamiese interne weerstand is die battery se interne weerstand tydens laai.

  • Q.

    Is die standaard oorladingsweerstandstoets?

    A.

    The IEC stipulates that the standard overcharge test for nickel-metal hydride batteries is: Discharge the battery at 0.2C to 1.0V/piece, and charge it continuously at 0.1C for 48 hours. The battery should have no deformation or leakage. After overcharge, the discharge time from 0.2C to 1.0V should be more than 5 hours.

  • Q.

    Wat is die IEC-standaardsikluslewetoets?

    A.

    IEC stipulates that the standard cycle life test of nickel-metal hydride batteries is: After the battery is placed at 0.2C to 1.0V/pc 01) Charge at 0.1C for 16 hours, then discharge at 0.2C for 2 hours and 30 minutes (one cycle) 02) Charge at 0.25C for 3 hours and 10 minutes, and discharge at 0.25C for 2 hours and 20 minutes (2-48 cycles) 03) Charge at 0.25C for 3 hours and 10 minutes, and release to 1.0V at 0.25C (49th cycle) 04) Charge at 0.1C for 16 hours, put it aside for 1 hour, discharge at 0.2C to 1.0V (50th cycle). For nickel-metal hydride batteries, after repeating 400 cycles of 1-4, the 0.2C discharge time should be more significant than 3 hours; for nickel-cadmium batteries, repeating a total of 500 cycles of 1-4, the 0.2C discharge time should be more critical than 3 hours.

  • Q.

    Wat is die interne druk van die battery?

    A.

    Refers to the internal air pressure of the battery, which is caused by the gas generated during the charging and discharging of the sealed battery and is mainly affected by battery materials, manufacturing processes, and battery structure. The main reason for this is that the gas generated by the decomposition of moisture and organic solution inside the battery accumulates. Generally, the internal pressure of the battery is maintained at an average level. In the case of overcharge or over-discharge, the internal pressure of the battery may increase: For example, overcharge, positive electrode: 4OH--4e → 2H2O + O2↑; ① The generated oxygen reacts with the hydrogen precipitated on the negative electrode to produce water 2H2 + O2 → 2H2O ② If the speed of reaction ② is lower than that of reaction ①, the oxygen generated will not be consumed in time, which will cause the internal pressure of the battery to rise.

  • Q.

    Wat is die standaard lading retensie toets?

    A.

    IEC stipulates that the standard charge retention test for nickel-metal hydride batteries is: After putting the battery at 0.2C to 1.0V, charge it at 0.1C for 16 hours, store it at 20℃±5℃ and humidity of 65%±20%, keep it for 28 days, then discharge it to 1.0V at 0.2C, and Ni-MH batteries should be more than 3 hours. The national standard stipulates that the standard charge retention test for lithium batteries is: (IEC has no relevant standards) the battery is placed at 0.2C to 3.0/piece, and then charged to 4.2V at a constant current and voltage of 1C, with a cut-off wind of 10mA and a temperature of 20 After storing for 28 days at ℃±5℃, discharge it to 2.75V at 0.2C and calculate the discharge capacity. Compared with the battery's nominal capacity, it should be no less than 85% of the initial total.

  • Q.

    Wat is 'n kortsluitingtoets?

    A.

    Gebruik 'n draad met interne weerstand ≤100mΩ om 'n volgelaaide battery se positiewe en negatiewe pole in 'n ontploffingsvaste boks te verbind om die positiewe en negatiewe pole te kortsluit. Die battery moenie ontplof of vlam vat nie.

  • Q.

    Wat is die toetse vir hoë temperatuur en hoë humiditeit?

    A.

    The high temperature and humidity test of Ni-MH battery are: After the battery is fully charged, store it under constant temperature and humidity conditions for several days, and observe no leakage during storage. The high temperature and high humidity test of lithium battery is: (national standard) Charge the battery with 1C constant current and constant voltage to 4.2V, cut-off current of 10mA, and then put it in a continuous temperature and humidity box at (40±2)℃ and relative humidity of 90%-95% for 48h, then take out the battery in (20 Leave it at ±5)℃ for two h. Observe that the appearance of the battery should be standard. Then discharge to 2.75V at a constant current of 1C, and then perform 1C charging and 1C discharge cycles at (20±5)℃ until the discharge capacity Not less than 85% of the initial total, but the number of cycles is not more than three times.

  • Q.

    Wat is 'n temperatuurstygingseksperiment?

    A.

    Nadat die battery ten volle gelaai is, plaas dit in die oond en verhit vanaf kamertemperatuur teen 'n tempo van 5°C/min. Nadat die battery ten volle gelaai is, plaas dit in die oond en verhit vanaf kamertemperatuur teen 'n tempo van 5°C/min. Wanneer die oondtemperatuur 130°C bereik, hou dit vir 30 minute. Die battery moenie ontplof of vlam vat nie. Wanneer die oondtemperatuur 130°C bereik, hou dit vir 30 minute. Die battery moenie ontplof of vlam vat nie.

  • Q.

    Wat is 'n temperatuursikluseksperiment?

    A.

    The temperature cycle experiment contains 27 cycles, and each process consists of the following steps: 01) The battery is changed from average temperature to 66±3℃, placed for 1 hour under the condition of 15±5%, 02) Switch to a temperature of 33±3°C and humidity of 90±5°C for 1 hour, 03) The condition is changed to -40±3℃ and placed for 1 hour 04) Put the battery at 25℃ for 0.5 hours These four steps complete a cycle. After 27 cycles of experiments, the battery should have no leakage, alkali climbing, rust, or other abnormal conditions.

  • Q.

    Wat is 'n valtoets?

    A.

    Nadat die battery of batterypak ten volle gelaai is, word dit drie keer vanaf 'n hoogte van 1m na die beton (of sement) grond laat val om skokke in willekeurige rigtings te verkry.

  • Q.

    Wat is 'n vibrasie-eksperiment?

    A.

    The vibration test method of Ni-MH battery is: After discharging the battery to 1.0V at 0.2C, charge it at 0.1C for 16 hours, and then vibrate under the following conditions after being left for 24 hours: Amplitude: 0.8mm Make the battery vibrate between 10HZ-55HZ, increasing or decreasing at a vibration rate of 1HZ every minute. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ. (Vibration time is 90min) The lithium battery vibration test method is: After the battery is discharged to 3.0V at 0.2C, it is charged to 4.2V with constant current and constant voltage at 1C, and the cut-off current is 10mA. After being left for 24 hours, it will vibrate under the following conditions: The vibration experiment is carried out with the vibration frequency from 10 Hz to 60 Hz to 10 Hz in 5 minutes, and the amplitude is 0.06 inches. The battery vibrates in three-axis directions, and each axis shakes for half an hour. The battery voltage change should be within ±0.02V, and the internal resistance change should be within ±5mΩ.

  • Q.

    Wat is 'n impaktoets?

    A.

    Nadat die battery ten volle gelaai is, plaas `n harde staaf horisontaal en laat val `n 20-pond voorwerp van `n sekere hoogte op die harde staaf. Die battery moet nie ontplof of vlam vat nie.

  • Q.

    Wat is 'n penetrasie-eksperiment?

    A.

    Nadat die battery ten volle gelaai is, steek 'n spyker van 'n spesifieke deursnee deur die storm se middelpunt en laat die pen in die battery. Die battery moet nie ontplof of vlam vat nie.

  • Q.

    Wat is 'n vuureksperiment?

    A.

    Plaas die volledig gelaaide battery op 'n verwarmingstoestel met 'n unieke beskermende deksel vir brand, en geen puin sal deur die beskermende omhulsel gaan nie.

  • Q.

    Watter sertifisering het die maatskappy se produkte geslaag?

    A.

    Dit het die ISO9001:2000-gehaltestelselsertifisering en ISO14001:2004-omgewingsbeskermingstelselsertifisering geslaag; die produk het die EU CE-sertifisering en Noord-Amerika UL-sertifisering behaal, die SGS-omgewingsbeskermingstoets geslaag en die patentlisensie van Ovonic verkry; terselfdertyd het PICC die maatskappy se produkte in die wêreld Scope-onderskrywing goedgekeur.

  • Q.

    Wat is 'n gereed-vir-gebruik-battery?

    A.

    Die gereed-vir-gebruik-battery is 'n nuwe tipe Ni-MH-battery met 'n hoë ladingretensiekoers wat deur die maatskappy bekendgestel is. Dit is 'n bergingbestande battery met die dubbele werkverrigting van 'n primêre en sekondêre battery en kan die primêre battery vervang. Dit wil sê, die battery kan herwin word en het 'n hoër oorblywende krag na berging vir dieselfde tyd as gewone sekondêre Ni-MH-batterye.

  • Q.

    ​​Why is Ready-To-Use (HFR) the ideal product to replace disposable batteries?

    A.

    Compared with similar products, this product has the following remarkable features: 01) Smaller self-discharge; 02) Longer storage time; 03) Over-discharge resistance; 04) Long cycle life; 05) Especially when the battery voltage is lower than 1.0V, it has a good capacity recovery function; More importantly, this type of battery has a charge retention rate of up to 75% when stored in an environment of 25°C for one year, so this battery is the ideal product to replace disposable batteries.

  • Q.

    Wat is die voorsorgmaatreëls wanneer die battery gebruik word?

    A.

    01) Please read the battery manual carefully before use; 02) The electrical and battery contacts should be clean, wiped clean with a damp cloth if necessary, and installed according to the polarity mark after drying; 03) Do not mix old and new batteries, and different types of batteries of the same model can not be combined so as not to reduce the efficiency of use; 04) The disposable battery cannot be regenerated by heating or charging; 05) Do not short-circuit the battery; 06) Do not disassemble and heat the battery or throw the battery into the water; 07) When electrical appliances are not in use for a long time, it should remove the battery, and it should turn the switch off after use; 08) Do not discard waste batteries randomly, and separate them from other garbage as much as possible to avoid polluting the environment; 09) When there is no adult supervision, do not allow children to replace the battery. Small batteries should be placed out of the reach of children; 10) it should store the battery in a cool, dry place without direct sunlight.

  • Q.

    Wat is die verskil tussen verskillende standaard herlaaibare batterye?

    A.

    At present, nickel-cadmium, nickel-metal hydride, and lithium-ion rechargeable batteries are widely used in various portable electrical equipment (such as notebook computers, cameras, and mobile phones). Each rechargeable battery has its unique chemical properties. The main difference between nickel-cadmium and nickel-metal hydride batteries is that the energy density of nickel-metal hydride batteries is relatively high. Compared with batteries of the same type, the capacity of Ni-MH batteries is twice that of Ni-Cd batteries. This means that the use of nickel-metal hydride batteries can significantly extend the working time of the equipment when no additional weight is added to the electrical equipment. Another advantage of nickel-metal hydride batteries is that they significantly reduce the "memory effect" problem in cadmium batteries to use nickel-metal hydride batteries more conveniently. Ni-MH batteries are more environmentally friendly than Ni-Cd batteries because there are no toxic heavy metal elements inside. Li-ion has also quickly become a common power source for portable devices. Li-ion can provide the same energy as Ni-MH batteries but can reduce weight by about 35%, suitable for electrical equipment such as cameras and laptops. It is crucial. Li-ion has no "memory effect," The advantages of no toxic substances are also essential factors that make it a common power source. It will significantly reduce the discharge efficiency of Ni-MH batteries at low temperatures. Generally, the charging efficiency will increase with the increase of temperature. However, when the temperature rises above 45°C, the performance of rechargeable battery materials at high temperatures will degrade, and it will significantly shorten the battery's cycle life.

  • Q.

    Wat is die tempo van ontlading van die battery? Wat is die uurlikse tempo van vrylating van die storm?

    A.

    Tempo ontlading verwys na die tempo verhouding tussen die ontlading stroom (A) en die aangeslane kapasiteit (A•h) tydens verbranding. Uurlikse tarief-ontlading verwys na die ure wat nodig is om die gegradeerde kapasiteit teen 'n spesifieke uitsetstroom te ontlaai.

  • Q.

    Hoekom is dit nodig om die battery warm te hou wanneer jy in die winter skiet?

    A.

    Since the battery in a digital camera has a low temperature, the active material activity is significantly reduced, which may not provide the camera's standard operating current, so outdoor shooting in areas with low temperature, especially. Pay attention to the warmth of the camera or battery.

  • Q.

    Wat is die werkstemperatuurreeks van litium-ioonbatterye?

    A.

    Lading -10—45 ℃ Ontlading -30—55 ℃

  • Q.

    Kan batterye van verskillende kapasiteit gekombineer word?

    A.

    As jy nuwe en ou batterye met verskillende kapasiteite meng of saam gebruik, kan daar lekkasie, nulspanning, ens. wees. Dit is as gevolg van die verskil in krag tydens die laaiproses, wat veroorsaak dat sommige batterye oorlaai word tydens laai. Sommige batterye is nie ten volle gelaai nie en het kapasiteit tydens ontlading. Die hoë battery is nie heeltemal ontlaai nie, en die lae kapasiteit battery is oorontlaai. In so 'n bose kringloop is die battery beskadig, en lek of het 'n lae (nul) spanning.

  • Q.

    Wat is 'n eksterne kortsluiting, en watter impak het dit op batterywerkverrigting?

    A.

    Om die buitenste twee punte van die battery aan enige geleier te koppel, sal 'n eksterne kortsluiting veroorsaak. Die kort kursus kan ernstige gevolge vir verskillende batterytipes meebring, soos elektroliettemperatuurstygings, interne lugdrukverhogings, ens. As die lugdruk die weerstaanspanning van die batterydop oorskry, sal die battery lek. Hierdie situasie beskadig die battery ernstig. As die veiligheidsklep misluk, kan dit selfs 'n ontploffing veroorsaak. Moet dus nie die battery ekstern kortsluit nie.

  • Q.

    Wat is die belangrikste faktore wat batterylewe beïnvloed?

    A.

    01) Charging: When choosing a charger, it is best to use a charger with correct charging termination devices (such as anti-overcharge time devices, negative voltage difference (-V) cut-off charging, and anti-overheating induction devices) to avoid shortening the battery life due to overcharging. Generally speaking, slow charging can prolong the service life of the battery better than fast charging. 02) Discharge: a. The depth of discharge is the main factor affecting battery life. The higher the depth of release, the shorter the battery life. In other words, as long as the depth of discharge is reduced, it can significantly extend the battery's service life. Therefore, we should avoid over-discharging the battery to a very low voltage. b. When the battery is discharged at a high temperature, it will shorten its service life. c. If the designed electronic equipment cannot completely stop all current, if the equipment is left unused for a long time without taking out the battery, the residual current will sometimes cause the battery to be excessively consumed, causing the storm to over-discharge. d. When using batteries with different capacities, chemical structures, or different charge levels, as well as batteries of various old and new types, the batteries will discharge too much and even cause reverse polarity charging. 03) Storage: If the battery is stored at a high temperature for a long time, it will attenuate its electrode activity and shorten its service life.

  • Q.

    Kan die battery in die toestel gestoor word nadat dit opgebruik is of as dit vir 'n lang tyd nie gebruik word nie?

    A.

    As dit die elektriese toestel vir 'n lang tydperk nie sal gebruik nie, is dit die beste om die battery te verwyder en dit in 'n lae-temperatuur, droë plek te plaas. Indien nie, selfs al is die elektriese toestel afgeskakel, sal die stelsel steeds die battery 'n lae stroomuitset laat hê, wat Die dienslewe van die storm sal verkort.

  • Q.

    Wat is die beter toestande vir batteryberging? Moet ek die battery vir langtermynberging ten volle laai?

    A.

    According to the IEC standard, it should store the battery at a temperature of 20℃±5℃ and humidity of (65±20)%. Generally speaking, the higher the storage temperature of the storm, the lower the remaining rate of capacity, and vice versa, the best place to store the battery when the refrigerator temperature is 0℃-10℃, especially for primary batteries. Even if the secondary battery loses its capacity after storage, it can be recovered as long as it is recharged and discharged several times. In theory, there is always energy loss when the battery is stored. The inherent electrochemical structure of the battery determines that the battery capacity is inevitably lost, mainly due to self-discharge. Usually, the self-discharge size is related to the solubility of the positive electrode material in the electrolyte and its instability (accessible to self-decompose) after being heated. The self-discharge of rechargeable batteries is much higher than that of primary batteries. If you want to store the battery for a long time, it is best to put it in a dry and low-temperature environment and keep the remaining battery power at about 40%. Of course, it is best to take out the battery once a month to ensure the excellent storage condition of the storm, but not to completely drain the battery and damage the battery.

  • Q.

    Wat is 'n standaard battery?

    A.

    A battery that is internationally prescribed as a standard for measuring potential (potential). It was invented by American electrical engineer E. Weston in 1892, so it is also called Weston battery. The positive electrode of the standard battery is the mercury sulfate electrode, the negative electrode is cadmium amalgam metal (containing 10% or 12.5% ​​cadmium), and the electrolyte is acidic, saturated cadmium sulfate aqueous solution, which is saturated cadmium sulfate and mercurous sulfate aqueous solution.

  • Q.

    Wat is die moontlike redes vir die nulspanning of lae spanning van die enkele battery?

    A.

    01) External short circuit or overcharge or reverse charge of the battery (forced over-discharge); 02) The battery is continuously overcharged by high-rate and high-current, which causes the battery core to expand, and the positive and negative electrodes are directly contacted and short-circuited; 03) The battery is short-circuited or slightly short-circuited. For example, improper placement of the positive and negative poles causes the pole piece to contact the short circuit, positive electrode contact, etc.

  • Q.

    Wat is die moontlike redes vir die nulspanning of lae spanning van die batterypak?

    A.

    01) Whether a single battery has zero voltage; 02) The plug is short-circuited or disconnected, and the connection to the plug is not good; 03) Desoldering and virtual welding of lead wire and battery; 04) The internal connection of the battery is incorrect, and the connection sheet and the battery are leaked, soldered, and unsoldered, etc.; 05) The electronic components inside the battery are incorrectly connected and damaged.

  • Q.

    Wat is die beheermetodes om te verhoed dat die battery oorlaai?

    A.

    To prevent the battery from being overcharged, it is necessary to control the charging endpoint. When the battery is complete, there will be some unique information that it can use to judge whether the charging has reached the endpoint. Generally, there are the following six methods to prevent the battery from being overcharged: 01) Peak voltage control: Determine the end of charging by detecting the peak voltage of the battery; 02) dT/DT control: Determine the end of charging by detecting the peak temperature change rate of the battery; 03) △T control: When the battery is fully charged, the difference between the temperature and the ambient temperature will reach the maximum; 04) -△V control: When the battery is fully charged and reaches a peak voltage, the voltage will drop by a particular value; 05) Timing control: control the endpoint of charging by setting a specific charging time, generally set the time required to charge 130% of the nominal capacity to handle;

  • Q.

    Wat is die moontlike redes waarom die battery of batterypak nie gelaai kan word nie?

    A.

    01) Zero-voltage battery or zero-voltage battery in the battery pack; 02) The battery pack is disconnected, the internal electronic components and the protection circuit is abnormal; 03) The charging equipment is faulty, and there is no output current; 04) External factors cause the charging efficiency to be too low (such as extremely low or extremely high temperature).

Het jy nie gekry wat jy wou hê nie?Kontak Ons

naby_wit
naby

Skryf navraag hier

antwoord binne 6 uur, enige vrae is welkom!